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Abstract. We study the properties of a noisy time series generated by a continuous-valued
feed-forward network in which the next input vector is determined from past output values.
Numerical simulations of a perceptron-type network exhibit the expected broadening of the
noise-free attractor, without changing the attractor dimension. We show that the broadening of
the attractor due to the noise scales inversely with the size of the system ,N , as 1/

√
N . We show

both analytically and numerically that the diffusion constant for the phase along the attractor
scales inversely withN . Hence, phase coherence holds up to a time that scales linearly with
the size of the system. We find that the mean first passage time,t , to switch between attractors
depends onN , and the reduced distance from bifurcationτ as t = a N

τ
exp(bτN1/2), where

b is a constant which depends on the amplitude of the external noise. This result is obtained
analytically for smallτ and is confirmed by numerical simulations.

1. Introduction

The application of neural networks to the field of time series, covers several areas such as
prediction [1], identification and control [2, 3]. The problem of time series prediction has
been well studied [3] in the context of linear modelling, and was later extended to nonlinear
models. In this paper we analyse a typical class of architectures used in this field in the
presence of additive noise, i.e. a feed-forward network governed by the following dynamic
rule:

St+1
1 = Stout+ noise St+1

j = Stj−1 j = 2, . . . , N (1)

whereStout is the network’s output at time stept andStj are the inputs at that time;N is the
size of the delayed input vector. The focus is set on the long-time (asymptotic) properties
of the sequences generated by the system under the given dynamic rule. The clean model
(without the additive noise) has been investigated [4, 5] and the main results are summarized
below.

Since a realistic time series is noisy, it is imperative to understand the effect of noise
on the output of the model. In this paper, we conduct an extensive quantitative study of the
effect of noise on this particular class of model networks. We restrict the analysis to non-
chaotic behaviour for two main reasons. First, chaotic behaviour does not allow long-term
predictions due to divergence of nearby trajectories, though such model networks are capable
of generating chaotic sequences. Secondly, nonlinear complex (however non-chaotic) time
series are an important subclass which imposes interesting questions. Hence understanding
the relation between such complex behaviour and the architecture of the network is crucial
form the point of view of time series prediction.

The basis for using time-delayed vectors as inputs is the theory of state space
reconstruction of a dynamic system using delay coordinates [6, 7]. An architecture
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Figure 1. SGen generating a time series.

incorporating time delays is the time-delay neural network (TDNN) [8], which when
operates in the iterative mode contains a recurrent loop (as in the model described above,
without noise). This type of network is appropriate for learning temporal sequences, e.g.
speech signal and for short-term prediction. The model we investigate can be viewed as
a degenerate form of a TDNN in which the delay lines are restricted to the input layer.
Note that the dynamic rule (equation (1)) corresponds to the closed-loop mode of operation
used for generating subsequent predictions iteratively once the network has been trained
on a given time series. Although some work has been done on the characterization of
a dynamic system from its time series using neural networks, not many analytical results
that connect architecture and long-time prediction are available (see [1]). Nevertheless,
practical considerations for choosing the architecture were investigated extensively (see [1]
and references therein).

Recently, it has been shown [5] that an hierarchy among the complexity of time series
generated by different architectures exists. This information can be used as a guideline for
an application in the following way. Given a time series one can conclude some quantitative
measures regarding the complexity of the sequence, e.g. the attractor dimension and choose
an architecture for the prediction task which is high enough in the hierarchy to ensure that
it is capable of generating such a complex sequence.

Let us review briefly the main findings of the clean model. For conciseness we shall
refer to the model generating the sequence as a sequence generator (SGen). The simplest
SGen consists of a perceptron (figure 1) whose output at timet , Stout, is determined by the
input vector at timet , St , (St = (St1, . . . , StN )) as follows

Stout = tanh(βJ · St ) (2)

for a fixed weight vectorJ and gainβ. The input vectorSt is given by:

Sti = St−iout i = 1 . . . N (3)

i.e. the inputs are chosen to be the output values at the previousN times. Thus, starting
from an initial stateSi = S0

i , i = 1 . . . N the system generates the sequenceSt , t = 1, 2, . . .
as follows

St = tanh

(
β

N∑
i=1

JiS
t−i
)
. (4)

In the case of a generic perceptron-SGen, the system is attracted into a quasiperiodic
(QP) flow governed by one of the Fourier components of the power spectrum (PS) of the
weight vector. Hence, the attractor dimension (AD) is one. Denoting the frequency and
phase of the governing Fourier component byK andφ respectively, the corresponding part
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in the weight vector isJi = R cos( 2π
N
Ki − πφ), and the dynamic solution in the leading

order ofN and 1� K � N is of the form:

St = tanh

[
A cos

(
2π

N
(K − φ)t

)]
. (5)

The amplitude(A) of this solution depends on the gain(β) and the phase(φ) in the
following way:

Nβ = πφ

R sinπφ

[ ∞∑
ρ=1

A2ρ−2

(ρ!)2
(22ρ − 1)B2ρ

]−1

(6)

whereBρ are the Bernoulli numbers. Note thatA vanishes below a critical value (which
depends on both the amplitude of the weight vector(R) and its phase(φ)) βc = 2

RN

πφ

sin(πφ) ,
indicating that the system undergoes a Hopf bifurcation atβc.

In the more involved case the model consists of a multi-layer network (MLN). The
solution is a combination of perceptron-like SGen solutions. The exact details, however,
depend onβ and the specification of the weight vectors (for more details see [5, 9]). The
AD in the generic case is bounded by the number of hidden units connected to the input
layer. Moreover, in [9] it was shown that the typical relaxation time for such a system
from an arbitrary initial condition is proportional to the size of the delayed input vector.
This result is of importance for time series prediction by setting a bound on the horizon of
predictions.

The problem of noise in a dynamic system is of great importance for the behaviour
of the system (e.g. stability), and hence its implications on the time series measured from
that system. In the classical theory of time series analysis (linear and nonlinear), one is
interested in the prediction ability of a model when trained with noisy data. Since one
intends to use a SGen to reproduce noisy data, it is important to understand how noise
affects the output of a generic SGen. In particular, it is crucial that the SGen be robust
under the addition of noise, which is non-trivial given the nonlinear feedback dynamics of
the SGen. The addition of noise enables us to check the stability of the previous results,
obtained for isolated models.

As we shall see, the SGen is indeed extremely stable in the presence of noise. The
noise causes the attractor to broaden. Even large noise of the order of the signal does not
destroy the attractor. This gives rise to several quantitative issues. In section 3 we focus
on a perceptron-SGen with one Fourier component in its weight vector. First, we analyse
the scaling withN of the manner in which the attractor is broadened due to the noise.
This quantity manifests the cooperative aspect of the degrees of freedom in the system. We
show that the broadening increases withN as 1/

√
N . Next, we discuss the issue of phase

coherence (PC). Loss of PC is a generic phenomenon for periodic systems perturbed by
noise. In this section, we analyse the extent to which adding noise to the SGen reduces its
PC. The analysis is carried out for two types of dynamic rules, namely sequential updating
(described above) and parallel updating (see section 2). We show that the phase behaves
as a biased random walk process, as typically observed in noisy oscillators, however the
diffusion coefficientD exhibits a power-law dependency onN . For the sequential (parallel)
rule, D ∼ 1/N2(1/N). The importance of this result is that for large systems, PC is lost
only over times that scale with the size of the system. This lost of PC also leads to
a broadening of the dominant component in the power spectrum. We observe that this
broadening decreases withN , consistent with the decrease ofD with N discussed above.

Next, we measure the AD of the broadened attractor. As mentioned before, we focus
on the classification of various SGens by the long-term sequence they produce, therefore
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we are interested in the estimation of this quantity. In section 4 we apply standard methods
to estimate the AD of time series generated by the SGen. With no noise added, we of
course recover the analytical results, for example AD= 1 for the perceptron-SGen. The
more important question is how the noise added to the system influences the measured
AD. Our treatment reflects that found in the literature of dynamic systems where the AD
was estimated from a measured (noisy) time series taken from chaotic systems or strange
attractors [10, 11]. We measure the AD of a perceptron-SGen, as well as of a committee
machine (CM) whose parameters were chosen in such a way that two Fourier components
have a non-zero coefficient and whose AD, therefore, should equal 2. We found that for
length scales greater than the typical size of the noise and well below the attractor’s radius,
the AD of the SGen does not differ from the expected analytical results.

Finally, in section 5 we analyse the effect of noise on a SGen with multiple attractors.
While in the non-noisy case, the perceptron-SGen exhibits a single stable attractor, here
we expect transitions between attractors due to the noise. We focus on the average time
needed to escape from a basin of attraction, and particularly its dependence on the sizes of
both the system and the attractor. This quantity, also known as the mean first passage time,
has been investigated extensively in the context of chemical reactions, dynamical systems
etc [12–14]. Obviously, we are interested in the case of a discrete system. This issue has
been less treated (see [12, 15]). We consider the case of a system governed by two Fourier
components that results in two attractors. The problem of escape time is related to the
evolution of the amplitude in coupled map equations. The phase portrait of such a map
suggests that the motion in this phase space can be approximated by a one-dimensional flow
of the form:

xn+1 = f (xn)+ ξn (7)

wheref (x) is a nonlinear map andξ is the noise term. Following the treatment of Talkner
and Hanggi [13], we relate our system to the problem of a discrete dynamics with small
nonlinearity in the presence of a weak noise. The analytical result is in a good agreement
with extensive simulations of the perceptron-SGen for both the polynomial prefactor and
the leading exponential part.

The results presented herein will primarily focus on the perceptron-SGen. Nevertheless
we expect that the general properties and trends remain true in the more general case.

A summary and discussion are presented in section 6.

2. Preliminaries

Let us introduce a few concepts which are of general use in the following. The basic
model is the SGen in its simplest form—a perceptron whose output is connected to the first
input, as described in the previous section. This is thesequentialupdating rule, given by
equations (2)–(4).

The sequential scheme can be thought of as a fully connected network withN+1 units.
The units are updated one at a time, i.e. at each time step, another unit plays the role of
an output unit. The weight matrix connecting the units is asymmetric with a certain spatial
structure where the interactions are only a function of the difference between the location
of each pair of units (ij ):

Jij = Wi−j modN+1 (8)

whereW0 = 0, andWl (l 6= 0) is the same weight vector of the sequential rule. The main
diagonal elements are zero, and the rest are the same values as the first row but cyclically
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permuted, e.g. forN = 3:

J =


0 W1 W2 W3

W3 0 W1 W2

W2 W3 0 W1

W1 W2 W3 0

 . (9)

This type of weight matrix is said to have a Toeplitz structure. To implement theparallel
scheme, all the units are updated simultaneously with the sequential rule via the matrix
described in equation (8):

St+1
i = tanh

(
β

N+1∑
j=1

JijS
t
j

)
. (10)

In the sequential scheme, noise is presented to the system in the following way:

St+1
1 = Stout+ ηt (11)

whereη is distributed according to:

E[ηt ] = 0

E[ηtηt
′
] = σ 2δtt ′ .

(12)

In this way, noise is added only to the first unit in each iteration of the dynamic rule.
In the parallel updating scheme, the noise is represented by a vector withN + 1

independent componentsηt , which is added to all units simultaneously in each iteration:

St+1
i = tanh

(
β

N+1∑
j=1

JijS
t
j

)
+ ηti . (13)

As we previously noted, the sequential SGen produces a time series which can be
denoted bySt , t = 1, 2, . . .. The sequenceSt is the basis of the numerical analysis. In
order to use the rich theory of reconstructing state space [6, 7], one has to embed the time
series in a phase space. The process of embedding a time series onto ad-dimensional space,
generates a set of vectors (or a trajectory) in that space. The embedded vectors are:

Xt = (St , St−1, . . . , St−d+1). (14)

3. Properties of a single attractor

In this section, we analyse the properties of a perceptron-like SGen with a weight
vector that contains a single Fourier component with an arbitrary phase(φ) of the form
Jj = R cos( 2π

N
Kj − πφ). When no noise is added to the dynamic equation (equation (4)),

the generic stable solution was found to be a QP orbit [5], e.g. figure 2. When noise is added
(equation (11)), the orbit is broadened. Nevertheless, the system does not become ergodic
and the trajectory is confined in phase space. A characteristic quantity is the noise-induced
width of the broadened attractor. In the following we present both quantitative explanations
and measurements of the dependence of this quantity on the size of the systemN . Next, we
discuss the important issue of phase coherence. A periodic system in the presence of noise
typically exhibits a loss of phase coherence. This is a result of the fundamental invariance
of the system with respect to time translation, so there is no restoring force to a perturbation
which induces a phase shift. As we shall see, this results in a broadening of the PS of the
time series generated by the system.
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Figure 2. Quasi-periodic orbit generated by a perceptronN = 50, K = 17, β = 1/17,
φ = 0.123.
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Figure 3. Same parameters as in the previous figure but with a uniform noise of amplitude
±0.1 added.

3.1. Attractor broadening

Let us define the width of the attractor〈W 〉 to be the average local broadening of the
embedded time series, see figure 3. In this case, we embed the data in a two-dimensional
space and measure the extent perpendicular to the local tangent. Having done this for a
system of sizesN = 20, 50, 100, 200, we plot〈W 〉 (denoted by〈width〉 in the figure) versus
N in figure 4. There exists a clear power-law scaling between the two quantities of the
form W ∝ A/√N whereA is a constant.

To understand this scaling law, consider a random vector (RV) in aN -dimensional
space. The relevant quantity is the projection of such a RV on a fixed vector—the weight
vectorJ . Denote the output fieldh as a sum of projections resulting from the stable solution
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Figure 4. The average width of the embedded time series. The power-law fit (broken curve) is
0.15/Nα , α = 0.5± 0.007.

vectorS and the noise vectorη:

h = J · (S + η) ≡ xs + xn. (15)

The components ofη are the lastN noise terms given by equation (11). The output value
is thenSout = tanh[βh]. In writing equation (15) we neglect contributions from noise terms
after iterations of the map, as these corrections are proportional toβ and so areO(1/N).
This can be justified as long as the parameterβ can be written as

β = (1+ b)βc (16)

andb does not scale withN . The termxs is of O(N) as this is the exact solution without
noise. The termxn is the focus of our interest. Since theηi components are RVs, we can
calculate the first two moments ofxn:

E(xn) =
N∑
i=1

JiE(ηi) = 0

E(x2
n) =

∑
i,j

JiJjE(ηiηj ) =
∑
i,j

JiJjσ
2δij = σ 2N

2
.

(17)

Thus the variance of the noise term is ofO(N). The geometrical interpretation is that a
RV has a projection which is ofO(

√
N) on a given direction. Since the parameterβ scales

as 1/N (as long asb in equation (16) does not scale withN ), we can conclude that the
contribution of the noise term scales as 1/

√
N , in agreement with the numerical results

presented above. Note that this results hold even for large noise values and are linear with
(σ ).

3.2. Phase coherency

On general grounds, we expect the phase to undergo a biased random walk, where the
bias represents the frequency of the unperturbed system. We can measure this directly
by comparing the phase of the noisy system with that of a noise-free ‘reference’ system.
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t

t+1
S

S

Figure 5. Relative phases of the embedded vectors. The left part of the figure describes a
‘clean’ point surrounded by typical noisy points.

Starting from identical initial conditions, the accumulated phase in each series is measured.
Denoting the accumulated phase in the clean/noisy series (subscriptc, n) at time t by:

8c(t) =
t∑
i=0

(φc(i + 1)− φc(i)) φc(0) = φn(0)

8n(t) =
t∑
i=0

(φn(i + 1)− φn(i))
(18)

where the phasesφc(i), φn(i) are the relative phases of theith clean/noisy embedded vectors
with respect to an arbitrary, but fixed, coordinate system (see figure 5, ignore the left part of
the figure). The quantity of interest is the expectation value of the squared phase difference
defined by:

〈182(t)〉 = E[(8c(t)−8n(t))
2] (19)

where〈•〉 stands for the average over all samples taken after the same timet .
An example of the quantity defined in equation (19) is given in figure 6. Clearly,

this behaviour indicates that the process is diffusive. The slope of this figure represents
the diffusion coefficient. The diffusion coefficient was extracted from data of the type
represented in figure 6 for both parallel and sequential updating rules. Each data point is
an average over 400 samples (as in the figure). In each case, the simulations were taken
at different system sizes. The exact parameters of each SGen are not important, however,
they were chosen such that the solution is QP and well above the critical valueβc where a
bifurcation occurs. Each point in figures 7 and 8 is the slope of the linear regression and
the statistical error is less than the size of the point. The results from the figures reveal a
scaling law of the diffusion coefficientD:

D ∼ 1/Na (20)

wherea = 1(2) for the parallel (sequential) rule. To understand these results, let us now
extend the arguments that led to the ‘width’ of the noise in the previous section. We start
with the parallel dynamics and develop a relation between〈182(t)〉 and time. It was shown
that the contribution of the noise is of the order 1/

√
N . Examine figure 5 (its left part) in

the context of figures 2 and 3. Each point along the clean orbit, is surrounded by a cloud
whose typical radius is ofO(1/

√
N). So basically, the distance between one iteration of the

same point in the clean and the noisy series, is ofO(1/
√
N). Since the noise is assumed to
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Figure 6. Example of the behaviour of the variance of the phase difference over time. The
slope (broken line) is the linear regression.
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Figure 7. Diffusion coefficient for the parallel rule. The linear regression (broken line) is
D = 0.029/Na with a = 1.0± 0.03.

be small, the phase can be approximated by the distance projected on the QP orbit. Hence,
the variance of that phase scales as 1/N . This explains the result for the scaling law in
the parallel case. The sequential dynamics has the same characteristics, however, the time
steps should be rescaled with respect to the parallel dynamics by a factor of 1/N . That is
the reason for the 1/N2 scaling.

One can conclude that phase diffusion indeed occurs (as expected), however, its
associated timescale increases with the size of the system in a power-law fashion
(equation (20)). Therefore the system remains coherent over increasingly long times as
N increases.
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Figure 8. Diffusion coefficient for the sequential rule. The linear regression (broken line) is
D = 0.154/Na with a = 2.0± 0.036.
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Figure 9. Broadening of the dominant component in the power spectrum. The weight vector
consists of one Fourier component withK = 7. The systems sizes areN = 32, 128.

The loss of PC is also manifested in the Fourier domain in the broadening of the
dominant Fourier component. In the unperturbed system, the power spectrum of the stable
solution/state is characterized by a sharp peak (delta function). The noisy system produces
a sequence whose power spectrum is broadened around the unperturbed Fourier component.
The larger the phase diffusion constantD, the more broadened the dominant component.
We indeed observe that the broadening decreases withN . Figure 9 depicts the power
spectrum of two sequences (of the same length) generated by two perceptron-SGen of sizes
N = 32, 128. The wavenumber of the single Fourier component isK = 7 and the weight
vector is produced according to:Ji = cos( 2π

N
Ki), i = 1 . . . N . The power axis is drawn on

a log scale to emphasize the broadening effect.
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4. Attractor dimension

We have seen that in the case of the perceptron-SGen, the noise gave rise to a broadening of
the attractor. The attractor, nonetheless remained essentially one-dimensional, as a perusal
of figures 2 and 3 immediately verifies. This is consistent with the general behaviour of
simple attractors in the presence of noise. For the case of the MLN, we expect the general
picture to persist. It is, however, non-trivial to verify this since the attractor is higher
dimensional. We employ for this purpose the tools that have been developed for analysing
dynamical systems from their time series. Of course, the question of attractor dimension is
crucial for exploiting these networks for prediction and modelling.

Many methods were proposed for estimating the AD. We just mention the simplest
method, which is the ‘box-counting’ [16]. In fact, most methods are based on statistical
estimators for the dimensionality of the attractor. We used the correlation-integral method,
that was introduced by Grassberger and Procaccia [17] (see also [18, 19]). In this method
the AD, denoted byD, is estimated by calculating the correlation sumC(r) from the data
as follows

D = lim
Np→∞
r→0

lnC(r)

ln r
(21)

where

C(r) = 1

N2
p

Np∑
i,j=1

2(r − |Xi −Xj |) (22)

Xi are the embedded time series vectors (equation (14)),Np is the number of data points
and2 is the Heaviside step function.

In practice, the AD is estimated in the so-called scaling region of the correlation integral,
i.e. one has to identify a sufficiently large range of lengths scales over which the slope is
constant. In many cases, the picture is not very clear especially when the number of points
is not large enough, or when certain parameters in the algorithm for estimatingC(r) are
not optimized (e.g. delay time) [20, 21]. We also note that since the data has a high
degree of correlation, one has to introduce a cut-off to exclude points that were generated
closer (in time) than this value [21]. These points have strong correlation that affect the
correlation dimension which measures the correlation between points from different passes
of the trajectory. We used the first zero of the autocorrelation function as a cut-off.

When the measurements are corrupt with noise one can distinguish between two regimes
of length scales; one dominated by the attractor and the other by the noise. This problem
was originally investigated by Mizrachiet al [10], and Zardecki [11]. In the broad sense,
one can identify four regions [22]. Due to the finite number of points in the data sample,
for very small r, the number of points in the sphere of radiusr approaches zero, hence
also the slope. At largerr, there is a transition to a region where the noise dominates. If
the number of points is large enough, the slope saturates the embedding dimension. At yet
larger r, one enters the scaling region with a constant slope estimating the AD (given that
the region is large enough). Finally, the slope returns to zero asr reaches the attractor’s
radius. For clarity, only the second and third regions are shown.

Let us now describe our measurements. The time series were generated for four
cases: a perceptron without noise (figure 10); perceptron with noise added as described
in equation (11) (figure 12); and a CM with three hidden units with and without noise
(figures 11 and 13). By a CM we mean a two-layered network whose second layer weights
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Figure 10. Perceptron without noise.N = 400, β = 1/180, φ = 0.2235R = 1.0. The full
guide line in the insert is at 1.01. (◦ m = 2, � m = 3, ♦ m = 4).
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Figure 11. CM that exhibits a two-dimensional attractor, without noise.N = 500,β = 1/185,
φi = 0.2235, 0.3524, 0.4244. Ri = 1.0, i = 1, 2, 3. The full guide line in the insert is at 2.02.
(◦ m = 2, � m = 3, ♦ m = 4).

equal one. Each perceptron in the hidden layer (as well as the perceptron-SGen) has only
one Fourier component in its weight vector and an arbitrary phase:

J hj = Rh cos

(
2π

N
Khj − πφh

)
(23)

whereR is an amplitude,N is the input size,K is the wavenumber,φ is a constant phase
shift andh labels the hidden unit. (The case of more than one Fourier component is treated
in a different context in section 5.) The gain parameterβ in the CM was chosen so that the
stable attractor of this SGen contains only two components in the power spectrum. This
choice produces a two-dimensional attractor. (The values of all the parameters are given in
the figure captions.)
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Figure 12. Perceptron with noise added.N = 100,β = 1/40, φ = 0.2235,R = 1.0. The full
guide line in the insert is at 1.01. (◦ m = 2, � m = 3, ♦ m = 4).
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Figure 13. CM that exhibits a two-dimensional attractor, with noise added.N = 500,
β = 1/185, φi = 0.2235, 0.3524, 0.4244. Ri = 1.0, i = 1, 2, 3. The full guide line in the
insert is at 2.07. (◦ m = 2, � m = 3, ♦ m = 4).

The figures present the calculated lnC2(r). The AD is estimated by the local slope,
d[lnC2(r)]/d[ln r] and presented in the insert. It is important to note that all data points are
rescaled to the region [0, 1], prior to the evaluation of the correlation integral. Figure 10
presents results for the simplest perceptron-SGen with only one Fourier component in its
weight vector. The arbitrary chosen phase shiftφ results in a QP orbit [5] which is one-
dimensional (AD= 1). We embedded the time series inm = 2, 3 and 4 dimensional
spaces. Clearly the measurements support the analytical results and the AD measured is
about AD= 1.01. In figure 11, we present the results for the more complicated attractor
generated by the CM. The expected AD is 2 (as described above). The results are slightly
above 2, that is 2.0 < AD < 2.03. Note that the embedding in a two-dimensional space
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gives a wrong result, as expected, since the structure of the attractor is unfolded only in a
three-dimensional space, at least.

Now we analyse the same perceptron-SGen and CM but with noise added (see figures 12
and 13). We embedded the time series as in the non-noisy case inm = 2, 3 and 4
dimensional spaces. We used a uniformly distributed noise with an amplitude of±10−2

while the attractor’s amplitude is bounded by±0.7(±1.2) for the perceptron (CM), prior
to rescaling. Our results are similar to other noisy dynamic systems [10] in the sense that
for lengths greater than the characteristic noise scale, the measured AD saturates the true
dimensionality, i.e. in this case AD= 1(2) (as in the non-noisy case). However, below
that scale, the noise dominates and since in general it fills the space in all dimensions,
the slope increases with the embedded dimension. In our case, the slope measured for the
noise is correct only inm = 2, 3, while in higher dimensions it is lower than the embedded
dimension. The reason for this inaccuracy is that we have not used enough points so the
space was not filled densely by the noise. The results are AD∼ 1.01(2.07) which are
slightly higher than the non-noisy case for the CM.

In all the figures, one can easily identify the scaling region which is quite broad, more
than an order of magnitude of length. The conclusion from the results is that the SGen
maintains its AD in the presence of noise. The effect of noise is bounded to small length
scales, as expected.

5. Escape from a meta-stable attractor

So far, we have discussed several properties of the dynamics in the neighbourhood of a
single attractor. This section is devoted to the analysis of the dynamics when there are
multiple attractors. In particular, we focus on the average time to escape from the domain
of one of the attractors. The picture one should have in mind is of several states having
local stability with transitions between them induced by noise.

In the first section we derive an analytical result for the mean first passage time (MFPT)
in the limit of weak noise and a weakly nonlinear map. The reasons for taking these limits
will be explained later. The second section describes a series of simulations which support
the analytical results.

5.1. The mean first passage time in periodic attractors

In the following we analyse the case where each of the meta-stable states is characterized
by anN -states periodic attractor. This property is achieved by setting the phase shiftφ

(e.g. equation (23)) to zero [5]. In order to keep the discussion as simple as possible, let
us restrict ourselves to the case of a perceptron-SGen with two Fourier components in the
power spectrum of the weight vector. Hence, the weight vector is given by:

Jj =
2∑

m=1

Rm cos

(
2π

N
Kmj

)
. (24)

5.1.1. A simplified model.The key point is our ability to identify a low-dimensional
discrete dynamics that describes the evolution of the solution, and relate it to our problem
of the SGen. In [5] it was shown that the general solution for a perceptron-SGen with a
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weight vector defined by equation (24), is of the form:

St = tanh

[ 2∑
m=1

Am cos

(
2π

N
Kmt

)]
. (25)

This solution leads to self-consistent coupled equations for the amplitudes of the dynamic
solution:

An+1
m = βNRm

∞∑
ρ=1

C(ρ)

ρ−1∑
t=0

(Anm)
2t+1(Anm′)

2ρ−2t−2

(t + 1)!t !(ρ − t − 1)!2
(26)

wheren labels the discrete time,C(ρ) ≡ (22ρ − 1)B2ρ/ρ (Bρ are the Bernoulli numbers),
andm′ = 2 for m = 1 and vice versa.

In the absence of noise, the coupled equations evolve into one of the two fixed points
(FPs) in which only one of the Fourier components has a non-vanishing coefficient. The
addition of noise, as described in equation (11), generates a perturbation in each of the
coupled equations. The perturbation can ‘kick’ the system out of the vicinity of one stable
FP so that it escapes to the other FP. We are interested in the mean time for such an event
to occur.

We assumeR1 = R2 = 1, i.e. the symmetric case. In order to continue, we truncate
and transform the coupled equations (equation (26)). For small amplitudes, one needs to
keep terms only up to third order. The result becomes:

An+1
m = βN

2

[
Anm −

1

4
(Anm)

3− 1

2
Anm(A

n
m′)

2

]
(27)

where, as before,m′ = 2 for m = 1 and vice versa. One can treat these equations as a
recursive solution for the amplitudes of the dynamic solution. In this sense, equation (27)
becomes discrete dynamic equations. For notational convenience we shall relabel the
variables withA1 → x andA2 → y. In addition, we introduce the reduced variableτ
as follows

τ = β − βc
βc

H⇒ β
N

2
= 1+ τ (28)

whereβc = 2/N . This redefinition allows us to rewrite equation (27) as anN -independent
map:

xn+1 = (1+ τ)[xn − 1
4x

3
n − 1

2xny
2
n]. (29)

The second equation is obtained by replacingx by y and vice versa,x ⇔ y.
Analysis of these equations under the assumption thatτ � 1, gives four symmetric

FPs, namely:y? = 0, x? = ±2
√
τ and vice versa. These FPs are stable and we consider

only the positive ones. In addition, we have a trivial unstable FP and four saddle points at
x±sp, y

±
sp= ± 2

√
3

3

√
τ . A typical phase portrait of this map is depicted in figure 14 (actually,

only the positive quadrant is shown). The stable FPs are atx? = 0.2, y? = 0 andy? = 0,
x? = 0.2 (the other two symmetric FPs are not shown). The saddle point shown is at
x+sp, y

+
sp = 0.2

√
3

3 , whereas the other three are not shown. Let us denote this point bySP+,
and withSP− denoting the other saddle point, i.e.(x+sp, y

−
sp).

The boundary between the two domains of attraction is clearly the linex = y. The
additive noise, as mentioned above, perturbs these equations and as a result the system may
escape from the domain of attraction defined byx > y. The random time it takes for the
system to reach the statex = y is the first passage time stochastic variable. Note that the
additive noise described in equation (11) is not the same one used in our model here, since
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Figure 14. Phase portrait of the two-dimensional map withτ = 0.01. SP denotes a saddle
point.

the first noise is applied directly to the SGen, while the second is the effect of such noise on
the amplitude of the solution. The connection between the following model and the SGen
is given in section 5.1.2.

The model for the perturbed system, is described by the following two-dimensional
noisy map:

xn+1 = (1+ τ)[xn − 1
4x

3
n − 1

2xny
2
n] + ξn (30)

whereξn is a Gaussian additive noise distributed according to:

ρε(ξ) = 1

(2πε)1/2
exp− ξ

2

2ε
. (31)

The map fory is obtained in the same manner as in equation (29). Note that due to the
mutual independence of theξn, the process defined in equation (30) is a Markov process.

The region of interest is ofO(
√
τ). Following an appropriate rescaling of equation (30),

we obtain:

x̃n+1 = f (x̃n, ỹn)+ ξ̃n = x̃n − τ [−x̃n + 1
4 x̃

3
n + 1

2 x̃nỹ
2
n] + ξ̃n. (32)

where x̃n, ỹn, ξ̃n are the rescaled variables. We further rewrite the map in the following
way:

f (xn, yn) = xn − τU ′(xn, yn). (33)

The derivative is taken with respect tox or y, depends on the variable for which the map
is written for.

Say the initial condition isy = 0, x = x?, i.e. one of the FPs. Since the line connecting
this FP and the saddle point is a valley, we may assume that the most probable escape
route is along this line (or its mirror through thex-axis, i.e. the line connecting the FP
with the saddle point(x+sp, y

−
sp)). This argument can be understood by rotating each noise

term tangent and perpendicular to the path. The perpendicular term decays fast due to
the restoring force, hence we can conjecture that the dynamics is mainly one dimensional.
Therefore, with the assumption of weak noise andτ � 1 we can reduce the map into one
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dimension, on that path (for details, see [23]). Hence, a one-dimensional noisy map is
obtained:

sn+1 = sn − τU ′(sn)+ ξ̂n (34)

where s defines the path. The noise term now is the tangential projection of the two-
dimensional noise on the path. The paths can be found by writing an equation forx(y) on
the path, however, the relation is implicit and cannot be used directly.

This type of a one-dimensional equation has been investigated for the case of small
nonlinearity [13, 15, 24], namely, the class of map functions with the property thatf (x)

deviates only weakly from the identity map:

f (x) = x − τ dU(x)

dx
τ � 1. (35)

The analogy with our one-dimensional map (equation (34)) is obvious. In the next section,
we adapt the derivation of [24] to our map.

5.1.2. MFPT analysis. In the following, we sketch the calculation of the MFPT for the
process defined in equation (34). The complete derivation and simulations will be given in
[23].

Assume that the process described in equation (34) is defined in(−∞,∞) and define
the random variablẽt(s), the first passage time from the intervalI = [SP−, SP+], by:

t̃ = min{n : |sn| > s+sp} (36)

i.e. the first time the process hits one of the boundaries, whereSP± are the saddle points
defined above, ands+sp is the value ofs at the saddle point. The MFPT,t (s), starting from
a point inI is given by:

t (s) = 〈t̃ (s)〉 = E[ t̃ |S0 = s]. (37)

It was shown that the MFPT can be written as (e.g. [24]):

t (s)− 1=
∫
I

P (z|s)t (z) dz (38)

whereP(z|s) denotes the transition probability to go fromsn = s to sn+1 = z in a single
step. Under the assumption of weak noiseε � 1, the functiont (s) is nearly constant inside
the domain of attraction. Fluctuations occur mainly near the boundary. The reason is that
only close to the boundary may one have a finite probability to jump over the boundary in
a small number of steps. Therefore, it was suggested [15, 24] that this function be written
as a product of a constant value, and a boundary layer function:

t (s) = T h̃(s) h̃(s?) = 1 (39)

where s? is the FP. The boundary layer extends a distance of orderε1/2 arounds = s+sp,

and we can write the scaled boundary layer functionh(s), h(s) = h̃((2ε)1/2s). Inserting
this assumption into equation (38) gives an integral equation forh(s). This equation was
analytically solved by Talkneret al [24] and by Knesslet al [15]. The leading exponential
part of the solution of this equation gives:

T ∝ exp

[
2τ

ε
(U(SP+)− U(s?))

]
. (40)
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Figure 15. Scaling of the average logarithm of the escape time in the two-dimensional model.
The full line is a linear regression and its slope is 0.658± 0.003.

The potential difference has been calculated analytically (see [23]) and found to be
U(SP+) − U(s?) = 1

3. The prefactor is obtained from integrals involving the boundary
layer function. The final result for the MFPT reads:

T = a

τ
exp

(
2

3

τ

ε

)
(41)

with a constant.
Simulations of our two-dimensional model (equation (32)) are shown in figure 15. The

reduced variableτ is varied for different noise amplitudesε. The results are in excellent
agreement with the prediction of the one-dimensional theory (equation (41)).

In section 5.2 we present the results from extensive simulations of the real system, i.e.
the SGen.

5.2. Numerical simulations

Measuring the MFPT directly from the time series generated by the noisy SGen is
impossible, since there is no way to distinguish between the different attractors. The natural
variable which does measure the projection of the current state on each attractor is the
relative amplitude in the power spectrum of the input vector. Note that there exists an
equivalence between the amplitudes of the solution to the coupled equations (equation (26))
and the amplitude in the power spectrum of the corresponding Fourier components.

We study an SGen with a weight vector containing two Fourier components, as described
at the beginning of the previous section, with no phase shift and both amplitudes equal to
one,R1 = R2 = 1. We applied the sequential updating scheme described in section 2 with
a noise which is normally distributedN (µ = 0, σ = 0.1). We set the initial conditions for
each run to one of the Fourier components. In each experiment we measure the number of
iterations before the amplitudes of the two components in the power spectrum of the input
vector, become equal. As we expect an exponential behaviour of this quantity, we record
the logarithm of the first passage time. We found that actually the average logarithm of
the median first passage time has smaller variations than the average logarithm of the first



Noisy time series generation 1207

0.00 0.20 0.40 0.60 0.80 1.00
-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

<
ln

 t m
ed

>
 +

 ln
(τ

/N
)

N=200
N=400
N=600
N=1000
N=1500

τ N1/2

Figure 16. Scaling of the average logarithm of the median escape time. The full line is a linear
regression and its slope is 11.2± 0.12.

passage time over all the data set. Each pair(N, τ) was tested 200–400 times and the first
passage time was recorded. The list of times was divided into 10 groups and the average
logarithm of the median from each group was taken. Finally, we end up with 10 values
from which we calculated the first and second moments.

Figure 16 depicts the ensemble of all experiments, in which we varied the size of
the system in the range 2006 N 6 1500 and the reduced variableτ in the range
0.003< τ < 0.04. To demonstrate the scaling properties, we plot the average logarithm of
the median escape time as a function ofτNα. The worst error of the data points is about
the size of the symbol, hence errors were omitted for clarity. Clearly, the average median
time to escape follows the relation:

〈tmed〉 = aN

τ
exp(bτNα) (42)

wherea, b, α are constants (given below).
In order to appreciate this result, we need an appropriate variable transformation. Recall

that in previous sections we saw that the projection of the noise scales as 1/
√
N , hence its

second moment scales as 1/N . On the other hand, correlations between the noise terms
might affect this scaling, therefore the exponent should bebτNα ≡ τ/ε, whereα < 1. Our
simulations show thatα ≈ 0.5. Also note thatb increases linearly withσ 2α. The prefactor
is affected by the nature of the sequential scheme, i.e. the fact that time is rescaled. As
expected, it was found that the polynomial increases in the MFPT is linear with the size of
the system, witha ≈ 0.07. The constant slope in the exponent (b) found from simulations
is ≈ 11.2, while the prediction given by the model is≈ 9.4.

6. Discussion

In this work we have studied the time series generated by a noisy SGen. We have focused
on the robustness of the isolated analytical results in the presence of noise, the issue of
phase coherence and escape time from a meta-stable attractor.
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Although the system does not becomes ergodic in the presence of noise, the attractor is
broadened. We have analysed this phenomena for the case of a perceptron-SGen and found
that the attractor in phase space is inversely broadened as

√
N . Nevertheless, it is clear that

this result is also applicable to more complicated architectures.
Analysis of the phase coherence is highly important in QP complex time series since,

in general, merely identifying the governing frequencies in the system is insufficient. To
investigate this phenomena, we have analysed the behaviour of the diffusion coefficient. It
is related to the divergence with time of the variance of the phase error. For uncorrelated
noise, we show that the diffusion coefficient should scale inversely withN . In order to test
this argument numerically, we used two updating schemes. The parallel scheme fits exactly
to our model. For the sequential scheme the diffusion coefficient scales as 1/N2 since the
time is rescaled by 1/N . Nevertheless, the conclusion is the same, namely, coherence is
indeed maintained for the time length which scales less than linear with the size of the
system, i.e.t ∼ Na (a < 1) for largeN . The loss of phase coherence is also manifested
in a broadening of the dominant component in the power spectrum in the same manner,
namely, the largerN is, the sharper the dominant component.

We have calculated numerically the attractor dimension from time series that were
generated by SGens for both cases (noisy and isolated), for the perceptron as well as for a
MLN. The results for the noisy/isolated system are very similar and in agreement with the
analytical results obtained for the isolated system [5], i.e. the attractor dimension does not
change in the presence of noise. This result is, of course, not surprising from the point of
view of dynamical systems, as described in section 4.

When the noise interacts with a system that consists of more than a single attractor,
one distinguishes between two timescales. In the short term, the system is still stable with
respect to the previous results, namely one can work within the framework of a single
attractor. However, for large times, fluctuations take over and the system may escape from
the initial basin of attraction. We have developed the theory for the MFPT to escape an
attractor defined by a Fourier component in the power spectrum of the weight vector. For
this analytical investigation, proper variables were identified. These are the amplitudes
of the solution to the unperturbed system. Without noise, we found that these variables
are connected via coupled equations, however, in the generic case only one variable has
a stable non-zero value (above bifurcation). Adding noise to the dynamics perturbs this
solution. We have focused on the case of two symmetric attractors. In the limit of small
noise and not far from the bifurcation we were able to reduce the dimensionality of the
dynamics into a one-dimensional flow. This manipulation allows us to use the theory
developed for discrete dynamics driven by noise. The results resemble those obtained in
systems with potential barrier undergoing a tunnelling in the sense that the escape time
has a polynomial prefactor and a leading exponential term. We defined a reduced variable
τ (equation (28)) which is closely related to the amplitude of the solution. This quantity
plays the role of the potential gap. Simulations of the SGen with two symmetric attractors
have shown that our theory, and especially the reduction to a one-dimensional flow, are
correct. The small corrections to the theory are due to the correlations between the noise
terms in the sequential scheme, while in the theory we assumed uncorrelated noise. In order
to complete the picture we still have to solve the non-symmetric case, and to extend it to
more than two attractors (details will be given in [23]). However, we expect that as long as
the number of significant attractors does not scale with the size of the system, this theory
can provide a good explanation. Further extensions can also be made to the multilayer
network.

Although this analysis was applied to a perceptron-SGen, it is reasonable to expect that
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the general properties remain valid in the case of a generic two-layer network where each
perceptron-SGen exhibits its attractors.
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